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Chapter 1
A sample =   a set of measurements

The sample size = the number of units 
where measurements       

are taken

A population =     a set of hypothetical 
measurements



Chapter 2

We have 2 kinds of data:

1) Qualitative or categorical: e.g: red, blue, 

green etc. tall, medium, short.

2) Numerical or measurement data: height, 

weight, shoe sizes etc.



We have 2 kinds of numerical data:

Discrete: can only take a finite or countable 

infinite values.

Continuous: can take all values on a 

continuous scale or interval. Counts are 

discrete, but they can be treated as 

continuous if they can take a wide range of 

values.



A variable can be qualitative, continuous or 
discrete. 

For each unit we observe the variable. 

It gets the value corresponding to what we 
observe on that unit. 

When we have collected data, we often want 
to describe the dataset.



Categorical data

We can calculate the frequency or relative 
frequency for each category in the dataset. 
Then we can show relative frequencies in 
a pie chart or a bar chart.

Example: Do you want to vote? 

Answers: 

Yes: 54%    No: 18%      don’t know: 28%



Degrees for each category = percent*360

yes

no

doNotKnow

Category

Peoples attitude to voting



This bar chart shows the relative frequency 

of kinds of answers.
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A Pareto diagram

is a bar chart, but the tallest bar comes first, 

then the second tallest and so on. The last 

bar shows the relative frequency for the 

category ”other”.



Discrete data.

Assume the distinct values observed are not 

too numerous. We can calculate the 

frequency and the relative frequency for 

each of the observed values. The results 

can be shown in a table, a line diagram or 

a histogram.



Example 1.

12 people picked strawberries in ½ kg. 

baskets. They picked:

Number of baskets: 9, 9, 8, 10, 9, 11, 9, 8, 

10, 10, 9, 7



Results from Minitab:

• Results for: baskets.MTW

•

• Tally for Discrete Variables: baskets 

• baskets  Count  CumCnt  Percent  CumPct

• 7      1       1     8,33    8,33

• 8      2       3    16,67   25,00

• 9      5       8    41,67   66,67

• 10      3      11    25,00   91,67

• 11      1      12    8,33  100,00

• N=     12



Relative frequencies versus baskets:
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Data on a continuous variable.

If we have 25 observations or less, we can 

make a dot (plot) diagram.

Example 2

We have 12 observations of firewood 

consumption in a district (in cubic meter per 

family per year): 2.81  1.60  2.97  1.90  1.01  

3.35  3.56  3.30  1.11  2.49  2.88  1.20

The values are plotted in a dot plot:



firewood

3,503,152,802,452,101,751,401,05

Firewood consumption in a district.



If the number of observations is more than 25, the 

scale will be split into intervals. Usually the 

intervals will have equal length, and there will be 

5 – 15 intervals.

It is smart to choose intervals with boundaries 

which are easy to recall.

The number of observations which belong to each 

interval is counted. That is: class frequencies are 

calculated.

Relative frequencies for the intervals can be 

calculated.



Relative frequency = 

class frequency/(total number of observations)

Make rules for what to do at boundaries.

Histogram for continuous data.

Draw vertical rectangles on each interval. The area 

represents the relative frequency.

The total area of the rectangles in a histogram = 1

Height= (relative frequency)/(width of interval)



The height of the rectangles must be 

calculated if the intervals do not have 

equal width. If the intervals have equal 

width then we can let the intervals have 

width 1 unit.
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Stem and leaf display.

Example 3: We have two digit numbers:
13 14 14 15 16 62 62 63 65 67

• Stem-and-Leaf Display: observed 

• Stem-and-leaf of observed  N  = 10

• Leaf Unit = 1,0

• 5  1  34456

• 5  2

• 5  3

• 5  4

• 5  5

• 5  6  22357



Measures of center.

We have observations: X1, X2,…..Xn

Example 4.

Three newborn babies have these weights:

X1=2.1, X2=3.2, X3=3.7

We can calculate the mean:
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To find the median: sort your observations. If 
n is odd, then we pick out the observation 
in the middle and let that observation be 
the median. 

If n is even, the we pick out the two 
observations in the middle and calculate 
their average. This average will be the 
median.

We prefer the median if one or some 
observations are extreme and will have a 
large influence on the mean.



If the number of observations is large (more 

than 25-30) then we can calculate 

percentiles. We want to calculate the 

100p-percentile:

Order the data from smallest to largest, we 

sort the data.

Calculate np. If np is an integer, say k, then 

calculate (X(k)+X(k+1))/2 where X(k) is sorted 

observation number k.

If np is not an integer we round it up to the 

next integer, say k and pick X(k) as the 

100p-percentile



Q1=25th percentile=Lower (first) quartile.

Q2=50th percentile=Second quartile 

(median)

Q3=75th percentile=Upper (third) quartile.

Measures of variation.

The sample variance of n observations:


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The sample standard deviation:


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The sample standard deviation has the 

same unit as the observations.



Example 4 about newborn babies.
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If our observations have a bell-shaped 
distribution, we expect:

68% of the observations in the dataset will 
lie within 

95% of the observations in the dataset will 
lie within

99.7% of the observations in the dataset will 
lie within

sx 

s2x 

s3x 



Example 4 revisited:        

and s = 0.8185. These results give:3x =

]456.5,544.0[s3x

]637.4,363.1[s2x

]819.3,181.2[sx







The sample range is defined as: the 

largest observation-the smallest 

observation. 

The sample interquartile range= 

Third quartile-First quartile.



Box plots
We have: minimum, Q1, Q2 (the median), Q3, 

maximum. It is possible to make several box 

plots alongside each other to compare them.
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Chapter 3
Several things can be measured on the same 

sampling unit, e.g. gender and type of education, 
height and weight.  

Summarization of bivariate categorical 
data.

If 2 traits are observed on each sampling unit, a two 
way frequency table can be made. 

Relative frequencies for the table or relative to a 
marginal total can be calculated.



Example 5.

We want to compare the proportions of males and 

females who believe in an afterlife. These data 

have been collected:

counts:

yes no total

females 435 147 582

males 375 134 509

total 810 281 1091



Relative frequencies can be calculated for each 

gender. Then we can make comparisons:

•

• It seems that the proportion of females who 

believe in an afterlife is similar to that of males.

yes no sum

females 0.7474 0.2526 1

males 0.7367 0.2633 1

sum 0.7424 0.2576 1



Simpson’s paradox

can occur if data from different sources are 

combined into a single table. We have 3 

traits and will make two way tables for 2 of 

them. We can disregard the third trait, and 

make a two way table for the 2 traits of 

interest. We can also make two way tables 

for the 2 traits of interest for each category 

of the third trait. If we are getting confusing 

results, we will call it Simpson’s paradox.



Example 6.

We ask 50 young and 50 old females and 50 

young and 50 old males this question:

Do you think the cinema needs an upgrade?

The results are:



yes no sum

young 30 20 50

old 20 30 50

sum 50 50 100

males

yes no Sum

young 20 30 50

old 30 20 50

sum 50 50 100

females



Combined:

Yes no Sum

Young 50 50 100

Old 50 50 100

Sum 100 100 200

The last table shows equal frequencies for 

young and old. The information about gender 

has been disregarded and we see no 

difference.



A designed experiment for making a 

comparison.

A double blind test can be conducted to 

eliminate the placebo effect. 

People in the trial don’t know whether they 

get real treatment or just a placebo.

We observe if the treatment has an effect or 

not.

Treatments can be compared statistically.



If we have one group of subjects, we have to 

split it into two groups by random 

assignment and then give the treatment to 

one group and placebo to the other group.

We will calculate the proportion with effect 

for both the treatment group and the 

placebo group.



Scatter diagram of bivariate 

measurement data.

Two numerical observations (x,y) are 

recorded for each sample unit.


Example 7.

Xi=height

Yi=weight
person i



Observations:

• height weight

• 160 55

• 166 61

• 154 50

• 170 60

• 159 50



Plot of y versus x.
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Example 8.

Pigs are observed.

Xi=weight when slaughtered

Yi=amount of fodder per kg. slaughter weight.

Observations:

X   80    85     90     95    100   105   110   115   120

Y 4,78  4,75  4,76  4,74  4,75  4,73  4,73  4,76  4,77



The relationship between x and y is not 

linear.
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We want to assess if X and Y are related, and what 

kind of relationship we have. There could be no 

relationship between X and Y. 

The correlation coefficient, a measure of linear 

relation.

It is given by:
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We have: 1r1 −

r > 0, large x and y together, small x and 

y together.

r < 0, large x and small y together, small 

x and large y together.
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• r shows the strength of a linear relation.

• When r is close to 1 or -1 there is a strong 

linear relationship between x and y.

• When r is close to 0 there is very little 

linear relationship between x and y. 



Correlation and causation.

• Even if we have a correlation between two 

variables, we can’t be sure that we have a 

cause and effect relationship.

• In some situations we can influence y by 

changing x. We might be able to arrange 

things in a most favorable way.



Prediction of one variable from another. 

(linear regression).

• We assume: Yi=b0+b1xi+ei

• Yi=the response variable

• xi=the predictor variable

 b0=the intercept

 b1= the slope

• ei=the error term



Example 7 revisited:

We have 5 pairs of observations:

(x1,y1) (x2,y2) (x3,y3) (x4,y4) (x5,y5) and fit a 

line to our observations.

The fitted line is: xˆˆŷ 10 bb +=

where
xx

xy

1
S

S
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xˆyˆ
10 bb −=

= the estimated slope

and = the estimated intercept.
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0b̂
1b̂and are determined by the 

method of least squares. That is to 

minimize:
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with respect to the two unknown 

parameters. The best fitting line is:



xˆˆŷ 10 bb +=

i10i xˆˆŷ bb +=

Now we can predict yi if we know xi:

The value of x can be one of the values in the 

dataset, or another hypothetical value. But the 

hypothetical value should not be far away 

from all x-values in the dataset.



Chapter 4. Probability.

An experiment is the process of 

observing a phenomenon that has 

variation in its outcomes.

E.g: success or failure, rain, sun, 

storm (weather), head or tail 

(tossing a coin) etc.



Definition:

• The sample space = all possible distinct 
outcomes of the experiment.

• An event = a subspace of the sample 
space, the outcome of an experiment.

• We want to find the probability or chance 
that an event will occur. 

• In some situations we can calculate 
probabilities by reasoning.



• In other situations we can give 
probabilities by our experience. These 
kind of probabilities will probably not be 
accurate.

• We can also try to give probabilities after 
conducting an experiment. To rely on 
these results we should have a lot of 
observations.

• E.g: A weather forecast can be very 
uncertain.



• Tossing a coin: 50% chance of getting a 

head, 50% chance of getting a tail.

• Probability: P(”head”) = 0.5  P(”tail”) = 0.5

• We have always:

1)event(P0 

)(P 

P( sample space) = 1

P( the null event) = 0 =



• Let the sample space be S = {e1,e2,…ek}

• e1,e2,…,ek are elements in S.

• Let A be an event.

=
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If all elements in S have the same 

probability of occurring, then:
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In a trial the event A can occur or not. We 

can do the trial many times, say n trials. 

Assume A occurs in m of them. We will 

estimate P(A):

n

m
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Let A be an event. A or      (= the 

complement of A)

A
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If the events A and B are mutually exclusive 

then:                 and

If A and B are not mutually exclusive then:

=BA
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)BA(P)B(P)A(P)BA(P  −+=



Conditional probability and 

independence.

• Assume that we know that the event B has 
occurred. What is now the probability that 
A will occur?

• We write this: P(A|B)= the conditional 
probability of A given B.

• In some situations we will have that: 
P(A|B)=P(A) 

• That is: The probability that A will occur is 
the same whether B occurs or if we do not 
know if B occurs.



• Then A and B are independent. We have:

• or

• If A and B are independent then:

= the multiplication law of probability. 
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• If                           

• then A and B are independent.

)B(P)A(P)BA(P =

Example 9

Let C = ”colorblind” , 

M = “male” and F = “female”

We know: P(C|M)=0.08 and P(C|F)=0.02

Calculate the probability of being colorblind in 

a population with 52% males.



Solution

gives:

)M(P
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Chapter 5. Probability 

distributions.

A random variable X associates a numerical 

value with each outcome of an experiment.

A random variable is discrete if it has a finite 

number of values or countable infinite 

number of values.

A random variable is continuous if it can 

take all values on a continuous scale or 

interval. 



Example 10:

We toss a coin three times. Let

X = the number of heads.

X can take the values 0, 1, 2, 3.

Example 11:

We count 

X = the number of traffic accidents at an    

intersection.

X can take the values 0, 1, 2,…infinite.



• The probability distribution of a discrete 
random variable X is a list of the distinct 
numerical values of X along with their 
associated probabilities.

• The probabilities could be given by a 
formula.

Example 10 revisited (about tossing a coin).
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Form of a discrete probability 

distribution.

The values X can take  |  Probability

x1 f(x1)

x2 f(x2)

. .

xk f(xk)

The probability distribution must satisfy these 

conditions:                      for each xi, i=1,..k1)x(f0 i 

1)x(f
k
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The probability histogram of X=the number of heads in 3 tosses of a coin.



• A probability distribution can be given by 

experience, a trial or by reasoning.

• In some situations we do not know the 

probability distribution of X. 

• We can conduct a trial and then estimate 

the probability distribution of X.



• We will calculate the relative frequencies 

for the values X can take and use the 

results as the probability distribution of X.

• If the trial is vast then the relative 

frequencies will be close to the 

probabilities.

• If the trial is small, the results will be very 

uncertain.



Example 12. (Look at page 179)

• Let X = the number of magazines to which 

a college senior subscribes.

subscriptions Frequency Relative frequency

0      61 61/400 = 0.15

1 153 153/400 = 0.38

2 106 106/400 = 0.27

3 56 56/400 = 0.14

4 24 24/400 = 0.06

total 400 1



• We use the relative frequencies in the 
table as the probability distribution of X.

• If we want to find P(X≥2):

• P(X≥2) = P(X=2)+P(X=3)+P(X=4) = 
0.27+0.14+0.06 = 0.47

• P(X≤1) = P(X=0)+P(X=1) = 
0.15+0.38=0.53

• We have: P(X≤1) = 1 – P(X≥2) = 1 – 0.47 
= 0.53



Expectation (mean) and standard 

deviation of a probability distribution.

• The expectation of a probability distribution 

= the center of a probability distribution.

• It is given by the formula:

 m = E(X) = 

i can have values 1,…,n or from 1 to infinite.

 )x(fx ii  == )xX(Px ii



Example 10 revisited.

• X = the number of heads in 3 tosses of a 

coin.
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The balance point of the distribution is 1.5



• The standard deviation of a probability 

distribution = a measure for the spread of a 

probability distribution.

• The standard deviation of X = sd(X) = s.
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Example 10 about 3 tosses of a coin.

• X = the number of heads in 3 tosses.
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• We have an alternative formula for the 

calculation of Var(X):

• Example 10:

• Var(X)=


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Bernoulli trials.

• A trial which can have only two outcomes 
is called a Bernoulli trial.

• The outcome can be “success” or “failure”.

• If we conduct n such trials, and they are 
independent and P(“success”)=p is the 
same for all trials, we have a binomial 
situation.

• We can observe X = the number of 
successes in n trials.

• X has a binomial distribution.



• X could be:

• The number of heads in n tosses of a coin. 

Here p=P(”head”) = 0.5 if the coin is fair.

• Assume                                                 

p=P(” a random tree has beetles”) = 0.30 

in a large forest, and that the trees have 

beetles or not independently. Then                       

X= the number of trees with beetles out of 

n randomly picked trees.



Small populations.

• Assume we have a population with two 

categories of elements, e.g. B and 

• The population consists of 15 items and 5 

are in category B.

• We draw 2 items, one at the time.

• We have: P(B1)=      for the first drawing.

• For the next drawing we have: P(B2|B1)=    

so we do not have a binomial situation.

B

15
5

14
4



• If the sampling is with replacement, we 

have a binomial situation. 

• If we have a large population, say at least 

100 and we only draw a small sample, say 

less than 10% of the population, we will 

have: P(B2|B1)    P(B1) and so on. It is 

approximately a binomial situation.





The Binomial Distribution.

• P(X=x) =                        for x=0,1,..n

• Where: 

• Example 10: Let X = the number of heads 
in 3 tosses of a coin.

• P(X=0)=
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• P(X=1)=

• P(X=2)=

• P(X=3)=

• If we know p in our formula, we can 

calculate probabilities and make a figure of 

the distribution.
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• A probability model is an assumed form of 

the probability distribution that describes 

the chance behaviour for a random 

variable X.

• Cumulative Binomial probabilities are 

tabulated in table 2 in the text book (page 

617) when n<26 and p={0.05, 0.1, 0.2, 0.3,  

0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.95}



Example 13.

• We sow 10 seeds. On the envelope it 
says: The probability of germination is 
80%. The seeds are a bit old, so we don’t 
know if this is still true.

• After a while we observe 6 germs out of 10 
seeds. 

• What is the probability of getting 6 or less 
germs out of 10 seeds if the probability of 
germination = p = 0.80?



• P(X≤6) = B10(6,0.80) = 0.121

• This is not very likely, but it can happen.

• We now sow 25 seeds and get 16 germs.

• We find: P(X≤16) = B25(16,0.8) = 0.047

• It is unlikely to get 16 or less germs out of 

25 seeds if p = 0.80. 

• This could indicate that p < 0.80
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The Cumulative Binomial Distribution.

• P(X≤c) = Bn(c,p) =            

= the area of all the bars to the left of c, the 

bar for c inclusive.
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• We will also find the probability of getting 

16 or more germs out of 25 seeds when p 

= 0.80:

• P(X≥16) = 1 - P(X≤15) = 1 – B25(15,0.80) 

= 1 – 0.017 = 0.983

• What is the probability of finding between 

14 and 17 germs if n=25 and p=0.80?

• P(14≤X≤17) = B25(17,0.80)-B25(13,0.80) = 

0.109 – 0.002 = 0.107



The Mean and Standard deviation of the 

Binomial Distribution.

• If X has a binomial distribution with n and p, 

then 

• E(X) = np

• Var(X) = np(1-p)

• The standard deviation of X is:

)p1(np)X(Var −==s



• If n = 25 and p = 0.80 then:

• E(X) = 

• Var(X) =

2080.025 =

420.080.025 =

24)X(sd)X(Var ====s



Chapter 6. Continuous 

distributions

We measure:

X = the weight of a newborn baby. 

We can have registrations for 100 – 500 –

1000 babies. Then we can make a 

histogram. The histogram can be 

approximated to a smooth curve.
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• We will call this smooth curve f(x).

• f(x) is the probability density function for X, a 

probability distribution for X.

• It has the properties:

• 1) The total area under the probability 

density curve = 1. That is:

1dx)x(f =



• 2) P(a≤X≤b) = the area under the probability 

density curve between a and b = 

• 3) f(x)≥0 for all x.

• We have: P(X = a) = 0

• We must think of probabilities for X as areas 

under the probability density curve.
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• Some important distributions have tables 
of areas.

• The standard normal distribution is 
tabulated for the area to the left of a point 
z (look at page 624-625 in the textbook.)

• We have: P(a≤X≤b) = P(X≤b) – P(X≤a)

• We don’t have to worry about whether 
P(X≤a) or P(X<a), these two probabilities 
are the same.



• Some probability distributions are 
tabulated for the area to the right of a point 
b, e.g: 

• The t-distribution

• The Chi-square distribution

• The F – distribution

• The normal and t distribution are 
symmetric

• The Chi-square and F distribution are not 
symmetric.



• A continuous random variable X has a mean 

E(X), a variance Var(X) and a standard 

deviation 

 m = E(X) is the balance point of the 

probability mass. If we have a symmetric 

distribution, then E(X) is the point of 

symmetry = m is the same as the median.

• The median Q2 is: P(X≤Q2) = 0.5 = P(X≥Q2)

)X(Var



• If the distribution is not symmetric, then the 

median and E(X) are usually different.

• We have: If Q1 is the first quartile (25th 

percentile) then: P(X≤Q1) = 0.25

• If Q3 is the third quartile then:             

P(X≤Q3) = 0.75

• A random variable can be standardized:

• Then E(Z) = 0 and Var(Z) = 1

)X(Var

)X(EX
Z

−
=



The Normal distribution.

m−3s   m−2s    m−s      m      m+s    m+2s   m+3s

f(x)

x

X has a normal distribution with E(X) = m and 

Var(X) = s2
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The distribution of x can be given by this formula:



• We have:

• P( m – s ≤ X ≤ m + s ) = 0.6826

• P( m – 2s ≤ X ≤ m + 2s ) = 0.9544

• P( m – 3s ≤ X ≤ m + 3s ) = 0.9974

• If X has a normal distribution with E(X) = m

and Var(X) = s2 then we write:

• X ~ N(m,s)

• If X ~ N(0,1) then X has a standard normal 

distribution.



Probability calculations with the standard 

normal distribution.

• Assume Z ~ N(0,1)

• P(Z < 0.83) = 0.7967, look at page 625.

• P(Z < - 1.03) = 0.1515

• P(Z > 1.03) = 1 – P(Z ≤ 1.03) = 1-0.8485 = 

0.1515



Use of the table in the opposite 

direction.

• P(Z≤a) = 0.20 gives a     - 0.84

• P(Z≥b) = 0.125       P(Z≤b) = 1-0.125 = 
0.875 and b     1.15

• P(-a≤Z≤a) = 0.95 = P(Z≤a) – P(Z≤ - a) = 
P(Z≤a)-(1-P(Z≥a)) = 2P(Z≤a) – 1 

• 2P(Z≤a) = 1.95      P(Z≤a) = 0.975 gives 

• a = 1.96
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Probability calculations with normal 

distributions.

• If X ~ N(m,s) then

s

m−
=

−
=

X

)X(Var

)X(EX
Z ~ N(0,1)

P(a≤X≤b) = )
b

Z
a
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s
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s
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Example 14.

• Let X = the height of people in a population 

(given in cm)

• Assume X ~ N(170,10)

• P(155 ≤ X ≤ 180) = 

=P(- 1.5≤ Z ≤1) = P(Z ≤1) – P(Z ≤ - 1.5) = 

0.8413 – 0.0668 = 0.7745
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The Normal approximation to the 

Binomial.

• Assume X has a binomial distribution, 

n>20 and p is not too near 0 or 1.

• Then the binomial distribution can be 

approximated by a normal distribution.

• Let n = 25 and p = 0.6 

• E(X) = np = 156.025 =

45.2)6.01(6.025)p1(np)X(Var =−=−=



• X is approximately N(15,2.45)
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• P(X=12) = B25(12,0.6) – B25(11,0.6) = 

0.154 – 0.078 = 0.076

• P(X=12) = P(11.5<X<12.5)=
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= P(Z< -1.02) – P(Z< -1.43) =           

0.1539 – 0.0764 = 0.0775



• If X has a binomial distribution and n>20 

and p is not too near 0 or 1 then:

• is approximately N(0,1)

• We have: P(X≤x)=

)p1(np
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The correction constant is 0.5



• If n is very large, we don’t need the 

continuity correction 0.5.

• To approximate the binomial distribution to 

the normal distribution, we should have: 

np≥ 5 and n(1-p)≥ 5 (the textbook 

suggests 15)

• In our example: n=25 and p=0.6, np=15 

and n(1-p)=25(1-0.6) = 10 



Chapter 7. Sampling 

Distributions

The probability distribution of a statistic is 

called its sampling distribution. 

A statistic can be a sampling mean. 

A statistic can be a sample standard 

deviation.



• We assume: Our hypothetical observations 
have a distribution f(x). All observations 
have: E(X) = m and Var(X)=s2.

• Let     = the sample mean.

• n = the sample size.

• It can be shown: 

• If the observations in the sample are 
independent, then:

• and 

X
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n
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We have:

• Samples:                           Sample mean

• Sample 1: observations

• Sample 2:  observations

• Sample k: observations

• The sample means have a distribution.

1X

2X

kX



• If the population has a normal distribution, 

then the sample mean      has a normal 

distribution

• That is: X1, X2,…Xn are independent and 

N(m,s) then     is 

)
n

,(N
s

m

X

X



The central limit theorem.

• If the observations follow the same 

distribution with mean m and standard 

deviation s and n is large (n>30), then     

has an approximately normal distribution 

with 

• and

X

m=)X(E

n
)X(Var

2s
=



• Then:                    is approximately N(0,1)

• Example 15: assume we have 36 

observations from a distribution with m = 25 

and s = 12.

• Calculate 

n
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Chapter 8. Drawing inferences from 

large samples.

Statistical inference deals with drawing 

conclusions about population parameters 

from an analysis of the sample data.

If we have a dataset drawn from a 

population, we can calculate descriptive 

statistics from it. 



• We can calculate:

• The sample mean = 

• The sample standard deviation = 

• The median = Q2

• First quartile = Q1

• Third quartile = Q3
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• If we want to find out something more 

about the distribution of the population, we 

might want to find m = E(X).

• We could want to:

• 1) Estimate m (point estimation)

• 2) Find an interval for m (confidence   

interval)

• 3) Test if m has a specific value (testing a 

hypothesis)



• A statistic intended for estimating a 

parameter is called a point estimator, or 

simply an estimator.

• The standard deviation of an estimator is 

called its standard error: SE

• If we want to estimate m then we usually will 

choose           .      will be a point estimate of 

m. This estimate of m might be uncertain.

Xμ̂ = X



• SE               is the standard deviation of 

• If we know s, this will tell us about the 
variability in the distribution of the estimator

• Usually we don’t know s. If we have a large 
sample, that is: n is large, then we use

n
)X(

s
= X

Xμ̂ =

n

S
as the standard deviation of X

Strictly speaking,      is an estimate of SE(   ).
n

S
X



Confidence interval for the population 

mean m.

• We want to construct an interval of values 
which is likely to contain the true value of 
m.

• We assume: X1, X2,…Xn are independent 
and N(m,s) where s is known.

• Before sampling, we want to find an 
interval which covers m with the probability 
1 – a. a is a small number.



a can be 0.01, 0.05, 0.10 or some other 
small number.

The standard normal distribution:



• We have:    ~ X )
n
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• A 100(1-a)% confidence interval for m is 
given by:

• Before we take the sample, this is a random 
interval.

• When we have collected a sample we can 
calculate a 90%, a 95% or a 99% 
confidence interval for m.









+−

n
zX

,n
zX

22

ss
aa



Example 16.

• We have 25 observations.

• They are independent N(m,s) where s is 

known to be 8.    = 42.7, and we will 

construct a 90% confidence interval for m.

• 42.7 – 2.632 = 40.068    40.07

• 42.7 + 2.632 = 45.332    45.33

X
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• [40.07 , 45.33] is a 90% confidence interval 

for m. 

• The method is so that the chance is 90% 

that this interval will cover m. 

• In most cases we don’t know s. But if we 

have a large sample, we have:

• A 100(1-a)% confidence interval for m is 

given by:









+−

n

S
zX

,n

S
zX

22

aa



• In the formula, S is the sample standard 
deviation.

• When we have a large sample, we know 
that     is approximately           

even if the observations in the sample don’t 
have a normal distribution.

• We also know that S is a very good 
estimator of s.
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The error margin.

• The error margin is one half of the length of 

the confidence interval. 

• We want to decide the sample size so that 

our confidence interval will have length 2d. 

That is:

• This gives:
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Example 17.

• Assume s = 8 and a = 0.1, 

• d = 1 ( the length of the interval is 2)

• We have to choose n = 174 to get the length 2 

of the 90% confidence interval for m. 

• This is the same as specifying the 90% error 

margin to 1.
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• We can calculate 90%, 95% and 99% 

confidence intervals for m after collecting a 

sample. The level of confidence is then 

0.90, 0.95 or 0.99 respectively.

• The interval with level of confidence 0.90 

will be shorter than the interval with level 

of confidence 0.95.

• If the level of confidence increases, then 

the length of the interval also increases. 



Definition of a confidence interval for a 

parameter.

• An interval (L,U) is a 100(1- a)% 

confidence interval for a parameter if

• P(L≤parameter≤U) = 1- a

• and the endpoints L and U are computable 

from the sample.



Testing hypotheses about a population 

mean m.

• We have two hypotheses called H0 and H1.

• H0 = the null hypothesis.

• H1 = the alternative hypothesis.

• We want to say that H1 is correct, but in 

many cases we will not be able to do so. 

• Then we must say that we accept H0.



• In most cases we will state that m has a 

value m0 in our null hypothesis. The 

alternative hypothesis can be: 

m≠m0, m<m0 or m>m0

• The first: m≠m0 is a two sided alternative.

m<m0 or m>m0 are one sided alternatives.

• If we want to examine if there has been a 

change, we will state in H0 that no change 

has appeared.



• In H1 it will be stated that there has been a 

change.

• If someone claims that things are in a 

certain way, and we doubt this and want to 

say: no it is not, we will put our claim in H1.

• H0 will contain the assertion we don’t 

believe in.

• We must decide whether we believe in H0

or H1.



• From a trial we will make a decision rule for 

what to do.

• If we want to test                                       

H0: m=m0 against H1 m<m0 we will reject H0 if 

• ≤ c = a constant.

• If we have:    >c we will retain H0.

• We will determine c such that there is just a 

small probability a of rejecting H0 if H0 is 

true. a is the level of significance for the test

X

X



• We have: a = P(          |H0 is true) =cX 
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If s is unknown and n>30 we will replace s by 

s in the formulas.



Example 18.

• Let X = the time it takes for a customer to 

get cash out of a teller machine.

• We know from previous experience that    

m = E(X) = 270 seconds and s = 24 

seconds.

• A vendor suggests that an upgrade of the 

machine will make m < 270.

• We will examine if he is right.



• We test H0: m = 270 against H1: m < 270 at a 

5% level of significance.

• We do a trial with an upgraded machine. 38 

observations are taken and we find:    =261

• We assume that s = 24 as before, but m may 

have changed.

• We find: 

• We have:    <263.6 and we reject H0.

• We will recommend an upgrade.

X
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• is called a test statistic.

a = the level of significance =             

P(rejecting H0|H0 is true) = P(doing type I error)

• We have chosen a very small. Usually we 

choose a = 0.01, 0.05 or 0.10

• We want a small chance of doing type I error.

X



• In hypotheses testing we also can do type II 

error, that is: retaining H0 if H1 is true.

• We have: b = P(doing type II error) = 

P(retaining H0|H1 is true).

• This probability depends on the value of m, 

and m can take a value in a region. We don’t 

have a specific value to put into the formula. 

But, unfortunately b can be large. We have 

no control on b.



• If we can reject H0 we know the chance of 

doing an error (of type I). But if we retain 

H0 we do not know the chance of doing an 

error (of type II).

• If we retain H0, it is possible that H0 is true. 

But if H0 is not true, the sample size is too 

small to be able to assert H1. 

• We can try to increase the sample size if 

possible, if we believe in H1.



P-value.

• P-value = the probability that the test statistic 
takes a value equal to or more extreme than the 
observed value calculated under H0.

• In our example18:   = 261

• We find: P(    ≤ 261|H0 is true)

• =                                           = P(Z≤ -2.31)

= 0.0104 = p-value
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• If the p-value is smaller than a then we will 

reject H0.

• is a test statistic, and

• is a test statistic if we know s.

• If we don’t know s, we will use

• as a test statistic.
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• If n>30 and H0 is true, Z~N(0,1) 

approximately

• Usually we will calculate Z and compare the 

value to a value in the standard normal 

probability table.

• At the a level of significance we can test: 

• H0: m=m0 against H1: m<m0

• Reject H0 if Z≤ -za



• or: H0: m=m0 against H1: m>m0

• Reject H0 if Z≥ za

• or: H0: m=m0 against H1: m≠m0

• Reject H0 if

• Assume we test the last hypotheses.

• We calculate          from a trial. We now find:

• P-value = P(         |m=m0) = P(Z≤-t|m=m0)+

P(Z≥t|m=m0)=2P(Z≤-t|m=m0)

2

zZ a

tZ =

tZ 



Example 18 revisited.

• Assume we are testing H0: m=270 against 

H1:m≠270 and found :   =261 and s = 24

• P-value= P(   ≥2.31|H0 is true)=

• 2P(Z≤- 2.31|H0 is true)=2·0.0104=0.0208

X

31.2

38

24

270261
Z =

−
=

Z



• We have: p-value = 0.0208 < 0.05 and we 

reject H0 with the level of significance = 0.05.

• We can have a 0.03 level of significance and 

still reject H0.

• We can say: The chance of a false conclusion 

is less than 3%.

• If we can reject H0 at the level of significance a

then the probability of drawing the wrong 

conclusion is at most a.



• We call this test: a large sample normal 

test or a Z-test.

• Steps for testing hypotheses:

• 1) Formulate H0 and H1.

• 2) State the test statistic and calculate it    

from the data.

• 3) Determine the rejection region.

• 4) Draw a conclusion. Tell the probability 

of a false conclusion if you can.



Inferences about a population 

proportion.

Assume X~bin(n,p), it has 

a binomial distribution. We have:        

is an estimator of p.     is a 

statistic.
n

X
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p
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If n is large:

is approximately N(0,1).

We can estimate 

by



A large sample confidence interval for p.

• For large n, a 100(1-a)% confidence 

interval for p is given by:
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Example 19:

• We have n = 100 and X = 80.

• [0.80-0.0784 , 0.80+0.0784]

• [0.7216 , 0.8784] is a 95% large sample 
confidence interval for p.

80.0p̂ =

0784.004.096.1
100

2.08.0
z 025.0 ==





Determining the sample size.

• An approximate 100(1-a)% error margin is:

• If we want the 100(1-a)% error margin to 

be d, then we choose n so that:

• which gives:

n2
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5.0
z

n

5.05.0
z

n

)p1(p
z 2

222

a

aaa ==



−

n2

z

d 2

a

=

2

2

d

z

4

1
n

















=

a



• If we want a 95% error margin to be 0.08: 
(think about the seeds): 

• d = 0.08   z0.025 = 1.96

• n = 

• We must choose n = 151 to be sure that the 
95% error margin is not more than 0.08. 
Then we also can be sure that our 
confidence interval will be no longer than 
0.16.

0625.150
08.0

96.1

4

1
2

=
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• When we construct a confidence interval 

for p, we might get:

• The lower limit < 0 or the upper limit > 1.

• We then truncate the interval so it will not 

be outside the interval [0,1]



Large sample tests about p.

• If n is large: ~                        

approximately

• We will test H0: p = p0 against H1: p≠ p0. 

• ~N(0,1) approximately if H0

is true. We reject H0 at the a level of 

significance if  

n

X
p̂ = )

n

)p1(p
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• We will test:

• H0: p = p0 against H1: p > p0. 

• We reject H0 at the a level of significance 

if Z≥ za.

• We will test:

• H0: p = p0 against H1: p < p0. 

• We reject H0 at the a level of significance 

if Z≤ - za.



Example 19 revisited.

• n = 100 and X = 80

• We want to test H0: p = 0.90 against 

H1: p≠ 0.90. 

• and we reject H0 at 

a 5% level of significance.

33.3

100

)9.01(9.0

9.08.0
Z −=

−

−
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• A 95% confidence interval for p can be

used to test H0: p = 0.90 against 

H1: p≠ 0.90.

• We found the interval [ 0.7216 , 0.8784].

• 0.90 is not in the interval, so we can reject 

H0 at a 5% level of significance. 



Chapter 9. Students t-distribution.

x

Y
-D

a
ta

5,02,50,0-2,5-5,0

0,4

0,3

0,2

0,1

0,0

f(x)with2

f(x)with5

N(0,1)

Variable

t-distributions with 2 or 5 degrees of freedom and
the standard normal distribution.



• The Students t-distribution is symmetric 

around 0.

• We have to know the degrees of freedom.

• There is one distribution for each value of 

the degrees of freedom: 1, 2,  , infinite.

• The Students t-distribution with infinite 

degrees of freedom is the same as N(0,1).



• has a Students t-distribution with 

• n-1 degrees of freedom if X1, X2,…., Xn are 
independent and N(m,s) with s unknown.

• A 100(1-a)% confidence interval for m = 
E(X) is:
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Example 20.

• Let X = the weight of a pack of butter.  

• We observe 8 packs of butter and assume: 

the weights are independent and N(m,s).

• From our sample we calculate              g   

and S = 11.82g.

• We want to calculate a 95% confidence 

interval for m.

503X =



365.2t 7,025.0 =

8

82.11365.2
503

n

S
tX 7,025.0


−=−

8

82.11365.2
503

n

S
tX 7,025.0


+−=+

We find in the t-table:

Lower limit=

= 503 – 9.88 = 493.12

Upper limit=

= 503 + 9.88 = 512.88

[493.12 , 512.88] is a 95% confidence 

interval for m. 



• We can now test with level of significance a:

• H0: m = m0 against H1: m≠ m0. 

• Calculate

• Reject H0 if 

n

s

μx
t 0−

=

1n,
2

tt
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• Test: H0: m = m0 against H1: m > m0. 

• Reject H0 if t ≥ ta,n-1

• Test: H0: m = m0 against H1: m < m0. 

• Reject H0 if t ≤ - ta,n-1

• We assume that X1, X2,…., Xn are 

independent and N(m,s) with s unknown.



• If the observations are far from normal, we 

can increase n, or conduct a nonparametric 

test.

• Example 20 revisited: There are 8 packs of 

butter.

• We test: H0: m = 500 against H1: m≠ 500

• We retain H0 at a 5% level of significance. 

7,025.0
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Chapter 10. Comparing two treatments.

There are two populations. We draw a random 

sample from each.
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Sample 1 (from population 1):

Sample 2 (from population 2):

We can calculate:



• We assume: X1, X2,…Xn1 are N(m1,s)

• Y1, Y2,…Yn2 are N(m2,s)

• All observations are independent.

 m1 is estimated by             and m2 by

• The common s is estimated by:
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• If n1 = n2 then:

• We can assume equal s for the two 

populations if 

• It can be shown:
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• T =                               has a t-distribution 

• with n1 + n2 – 2 degrees of freedom if our 

assumptions are valid.

• A small sample 100(1-a)% confidence 

interval for m1 – m2 is:
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• Example 21: Out of 21 pigs of the same 

age and race we select 10 randomly. They 

are given diet A. The other 11 pigs are 

given diet B. After a certain period of time 

we observe the increase in weights in 

kilos. 

• The observations from diet A are:           

X1, X2,…,X10. We assume they are: 

N(m1,s).

• The observations from diet B are:           

Y1, Y2,…,Y11. We assume they are: 

N(m2,s). 



• All observations are assumed to be independent.

• The observations are:

• Row  dietA  dietB

• 1   11,8   15,4

• 2   15,4   10,0

• 3   11,3   17,7

• 4   13,6   14,0

• 5   12,2   13,6

• 6   10,9   15,9

• 7    7,7   12,2

• 8    8,6   11,3

• 9   14,5   13,2

• 10   10,9     8,6

• 11          13,6



• We want to calculate a 95% confidence 
interval for m1 – m2 : From the observations 
we calculate:

• In the t-table we find: t0.025,19 = 2.093

69.11x = 23.13y =

414.2s1 = 633.2s2 =

53.2
19

633.210414.29
s

22

p =
+

=



• Lower limit = 

• Upper limit = 

• [-3.85 , 0.77] is a 95% confidence interval 

for m1 – m2 .

85.3
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1
53.2093.223.1369.11 −=+−−

77.0
11
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1
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• The confidence interval can be used to 

test H0: m1-m2=d0 against H1: m1-m2≠d0 at 

the a level of significance.

• We reject H0 if d0 is outside the interval.

• In example 21 we test H0: m1-m2=0 against 

H1: m1-m2≠0.

• We retain H0 at a 5% level of significance 

because 0 is inside the interval.



• If we want to test 

• H0: m1-m2=d0 against H1: m1-m2≠d0 with the a

level of significance and we don’t have a 

100(1-a)% confidence interval for m1-m2

• we calculate:

• We reject H0 if |t|≥               = the upper 

-percentile in the t-distribution with n1+n2-2 

degrees of freedom.
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• To test: H0: m1-m2=d0 against H1: m1-m2>d0

with the a level of significance :

• Reject H0 if t ≥ ta,n1+n2-2

• To test: H0: m1-m2=d0 against H1: m1-m2<d0

with the a level of significance :

• Reject H0 if t ≤ -ta,n1+n2-2



Example 21 revisited.

• We test: H0: m1-m2=0 against H1: m1-m2<0

with confidence level 0.05.

• t0.05,19 = 1.729

• t > -1.729 and we retain H0.
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Two large samples.

• If we have two large samples, say n1 and 

n2 >30, we can replace

• and               in the formula for

the confidence interval by                and

respectively.
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• In testing hypotheses, we will calculate 

• and compare to z in the standard normal 

distribution.

• But if we have n1 and n2 both >30 I guess 

we will rather use Minitab. 

• In Minitab, the two populations can have 

different standard deviations.
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Matched pairs comparisons.

• We want to compare two kinds of medical 

treatments, treatment A and B, and we 

have n pairs of identical twins.

• For each pair, we decide at random who is 

going to get treatment A and who is going 

to get treatment B.

• Let xi = observed weight loss for person 

getting treatment A in pair number i.

• yi = observed weight loss for person 

getting treatment B in pair number i.



• For each pair, we calculate di=xi-yi. 

• Before we observe, we have the random 
variables D1,…,Dn where Di=Xi-Yi

• We assume D1,…, Dn are independent 
and N(d,sD) 

• Now we have a 1-sample situation where 
the differences are treated as the 
observations. If we want to calculate a 
100(1-a)% confidence interval for d or test 
hypotheses about d, we put the 
differences into the formulas and 
procedures for one population mean. 



• This means: 

• If the number of pairs is 30 or less, we will 

calculate a t interval or perform a t-test for 

d.

• If the number of pairs is more than 30, we 

will calculate a z interval or perform a z-

test for d.

• We will often use matched pairs if we are 

growing something at different places.

• If we want to compare two kinds of seeds 

and we look at crop yields, we can arrange 

a trial like this:



Kind A Kind B

Kind B Kind A

Kind B Kind A

Kind A Kind B

Place 3

Place 2

Place 1

Place 4

This is an experiment in blocks.



• In every block it should be decided at 
random if kind A should be grown to the 
left or to the right.

• Climate and soil quality may be different 
from block to block.

• When we analyze d1,…, dn where 

di =xi – yi we have eluded effects from 
climate and soil quality, and it will be 
easier to compare expected crop yields. 



Example 22. Growing strawberries.

• We will compare expected crop yields for 

two sorts of strawberry plants. Both sorts 

are grown at 12 different locations. The 

fields are of the same size and there are 

approximately the same number of plants 

of each sort at each location.

• Let Xi = mean crop yield per plant in gram, 

sort 1, location i.

• Yi = mean crop yield per plant in gram, 

sort 2, location i.



• The observations are:

• Row  location      x         y         d

• 1         1  330,5  289,8   40,7

• 2         2  299,0  300,0    -1,0

• 3         3  334,5  310,2   24,3

• 4         4  307,7  317,0    -9,3

• 5         5  351,0  340,6   10,4

• 6         6  318,3  323,4    -5,1

• 7         7  338,1  312,0   26,1

• 8         8  321,2  304,0   17,2

• 9         9  344,0  316,8   27,2

• 10        10  301,4  322,7  -21,3

• 11        11  331,6  311,1   20,5

• 12        12  348,3  323,9   24,4



• Calculations give:

• We want to calculate a 95% confidence 

interval for d = E(Di)

• Lower limit = 

• Upper limit =

8417.12d =

28.18)dd(
1n

1
s

n

1i

2

iD =−
−

= 
=

23.1
12

28.18
201.28417.12

n

s
td D

1n,
2

=−=−
−

a

46.24
12

28.18
201.28417.12

n

s
td D

1n,
2

=+=+
−

a



• [1.23 , 24.46] is a 95% confidence interval 

for d.

• The interval can be used for testing 

• H0: d =0 against H1: d ≠0 

• 0 is outside the interval, and we reject H0 at 

a 5% level of significance.

• We test H0: d =0 against H1: d >0 

11,05.0
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n

s

d
t ====



• We reject H0 at a 5% level of significance.

• We state that sort 1 has a greater mean 

crop yield than sort 2.



10.6 Comparing two population 

proportions.

We have two populations. A random sample 
of size n1 is taken from the first population and 
a random sample of size n2 is taken from the 

second population. 

For each sample unit we look for an event A.

P(A) = p1 in the first population and 

P(A) = p2 in the second population.

Each sample unit is assumed to have A or not 
independently of the other units.



• Let X = the number of units having A in the 

first sample.

• Let Y = the number of units having A in the 

second sample.

• We estimate p1 by             and p2 by

•

• It can be shown:
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• A large sample 100(1-a)% confidence 

interval for p1 – p2 is:
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Example 23. There are two sorts of seed. Let 

p=P(” germination”).

We sow 37 seeds of sort 1 and observe 

X = the number of germs. X=30, n1=37. 

We sow 32 seeds of sort 2 and observe 

Y = the number of germs. Y=29, n2 = 32.



• We will construct a large sample 95% 

confidence interval for p1 – p2:
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• Lower limit =

• Upper limit =

• [-0.256 , 0.066] is a 95% large sample 
confidence interval for p1-p2.
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• We can test:H0: p1-p2= 0 against H1:p1-p2 ≠ 0

• Calculate:                               

• where 

• We reject H0 if |z|≥
2
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• Test H0: p1-p2 = 0 against H1: p1 – p2 < 0

• Reject H0 with the a level of significance if 

z ≤ -za.

• Test H0: p1-p2 = 0 against H1: p1 – p2 > 0

• Reject H0 with the a level of significance if 

z ≥ za.

• Example 23 revisited: We test:

• H0: p1-p2= 0 against H1:p1-p2 ≠ 0
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|z|96.1z 025.0 = and we retain H0.

We can also test: H0: p1-p2=0 against H1:p1-p2 < 0

Z0.05= 1.645   -1.645< -1.118 and H0 is retained.



Chapter 11.Regression analysis 1.

Simple linear regression.

• We observe X and Y from n units. The 
purpose for doing this could be:

• We want to find a general connection 
between X and Y or we want to predict Y 
from X. 

• In regression analysis X=x is considered 
as known, while Y is a random variable 
and it depends on x.

• Y is called the response variable

• X is called the predictor variable.



Example 24.

• People in forestry need to estimate the 

amount of timber in a given area of a 

forest. 

• To examine the relationship between 

diameter (x) and volume (y) of an 

eucalyptus tree we have these 

observations from 8 trees:



• Row  diameter  volume

• 1      0,34     0,67

• 2      0,38     0,71

• 3      0,41     0,78

• 4      0,44     0,83

• 5      0,46     0,87

• 6      0,47     0,89

• 7      0,46     0,88

• 8      0,49     0,99

• Diameters are give in meters, volumes in 
cubic meters.
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• If we find a plot like this, we will assume 

the model: Yi =b0+b1xi+ei

• This is the model of linear regression.

• The random errors e1, e2,…en are 

assumed to be independent N(0,s).

• Then Y1, Y2,…Yn are independent.

• Given X=x, Yi is N(b0+b1xi,s)



• The unknown parameters b0 and b1 are 

estimated by the least square estimators 

and     respectively.

• The estimates for the eucalyptus trees in 

example 24 are:    = -0.03 ,     = 2

• For eucalyptus trees with diameter 0.4 m. 

we will estimate the mean volume m0=E(Y0) 

as:

0b̂
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• If we have one eucalyptus tree with diameter 

0.4 m. we will predict the volume of the tree 

by:

• We can predict the volumes of all trees in 

the dataset. The points                             are 

on the fitted line.      is called a fitted value.

• The residual of observation i is: 
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iii ŷyê −=
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• Interpretation of     : if x=0 then we predict Y 
to be

• Interpretation of    : if x increases by 1 then 
the predicted Y increases by

• In example 24:    = -0.03 which means that 
the predicted volume of a tree with diameter 
0 is -0.03. This does not give sense, 
because we have not observed Y when x=0.

• =2 which means that if the diameter of a 
tree increases by 1m then the predicted 
volume of the tree increases by 2m3.
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 s2 is estimated by:

• SSE is the sum of squares for errors.

• It can be shown that:     ~N(b0,          ) 

~N(b1,          ) and       ~N(m0,           )

It can be shown that:
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• These standard deviations are estimated by 

replacing s by 

2n

SSE
s

−
=


=

−

=
n

1i

2

i

1

)xx(

)ˆ(SE
s

b


=

−

−
+=

n

1i

2

i

2

0

0

)xx(

)xx(

n

1
)ˆ(SE sm



• These estimated standard deviations will be 

denoted as: 

• Now we can calculate 100(1-a)% confidence 

intervals( the t-distribution has n-2 degrees of 

freedom):

• For b0: 

• For b1:
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• For m0:

• A 100(1-a)% prediction interval for Y0 is:

• Here

is the estimated standard error of 
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• The prediction interval for Y0 when X=x0 will 

always be wider than the confidence interval 

for m0 when X=x0. 

• Both intervals will be more narrow when 

x0=      than when x0 has any other value.

Interpretation of a 100(1-a)% prediction 

interval for Y0:

The probability that Y0 will be inside the 

interval is 1-a.

x



• Interpretation of a 100(1-a)% confidence 

interval for m0:

• We are 100(1-a)% confident that the 

interval will cover m0.

• If some x-values in the dataset are close to 

0 we can perform a test for the intercept b0 . 

It is based on the test-statistic: 
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• Usually b0 is 0. This means that we are 

testing if the line does not go through the 

origin.

• A test for H0: b0 = b0 against H1: b0≠b0:

• Reject H0 if         ≥ 

• A test for H0: b0 = b0 against H1: b0>b0:

• Reject H0 if      ≥ ta,n-2

• A test for H0: b0 = b0 against H1: b0<b0:

• Reject H0 if       ≤ - ta,n-2
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• A test for the slope b1 is based on the test-

statistic: 

• Here b1 is the value which is specified in H0. 

• A test for H0: b1 = b1 against H1: b1≠b1:

• Reject H0 if         ≥

1

1
ˆ

11
ˆ

S

bˆ
t

b

b

b −
=

2n,
2

t
−

a
1
ˆt

b



• A test for H0: b1 = b1 against H1: b1>b1:

• Reject H0 if      ≥ ta,n-2

• A test for H0: b1 = b1 against H1: b1<b1:

• Reject H0 if       ≤ - ta,n-2

The strength of a linear relation.

The linear relation is strong if SSE is small. 

It can be shown: 
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• Here r is the sample correlation coefficient.

• If r2 is close to 1 then SSE will be small.

• r2 comes out of Minitab as R-sq. It is given 

in %.

• If r2 is close to 1 we have a strong linear 

relationship between X and Y.

• If r2 is close to 0 we don’t have a linear 

relationship between X and Y.



• We have:

• It is the fraction of the variability in Y which 

is explained by the fitted linear regression 

model.

• Minitab also calculates R-sq(adj):
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• We evaluate the fit of the model by R2 and 

a plot of the residuals against the fitted 

values.

• 0≤R2≤1 always.

• If R2 is large (≥ 0.7) and we don’t see a 

systematic pattern in the plot, we have a 

good model. 

• The model has a poor fit if R2< 0.3



Example 24 revisited.

Regression Analysis: volume versus diameter

The regression equation is

volume = - 0,0338 + 2,00 diameter

Predictor      Coef     SE Coef      T      P

Constant   -0,03381  0,07902  -0,43  0,684

diameter     1,9972    0,1821   10,97  0,000

S = 0,0244944   R-Sq = 95,2%   R-Sq(adj) = 94,5%



Residual plots for 8 eucalyptus 

trees.
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Chapter 12. Regression Analysis 2.

Multiple linear regression.

The response variable can depend 

on more than one predictor 

variable.



• Example 25: For location i we observe:

• Yi= the yield of a crop of carrots in kilo per 1000m2.

• Xi1= the average temperature per day   

during the growth season.

• Xi2= the average rainfall per day during the 

growth season.

• Xi3=The average radiation from the sun per day 

during the growth season.

• Xi4=The number of days from April 30. until 

sowing.

• Xi5=The number of days from sowing to  

harvesting.



• There are observations from 12 places, 
i=1,….12. 

• A multiple linear regression model can be:

• Yi = b0+b1xi1+b2xi2+b3xi3+b4xi4+b5xi5+ei

• i=1,….,12.

• The error terms are assumed to be 
independent and N(0,s).

• The unknown parameters are: b0, b1, b2, 
b3, b4, b5 and s. 



• Minitab estimates these unknown 

parameters by the method of least 

squares.

• In example 25, that is to minimize 

• With respect to b0, b1, b2, b3, b4, b5.

• The values of the parameters that 

minimize Q are:
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• A fitted value for unit no i in the dataset is:

• An estimator of s2 is:

• Here k = the number of predictor variables in 
the model and n=the number of observed 
units in the dataset which is used to fit the 
model. (k=5 and n=12 in example 25)
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• In regression analysis: n must be greater 

than k.

• If n≤k, some other analysis can be 

performed, e.g. PCR or PLS.

• In regression analysis the coefficient of 

determination is important.

• It is:
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• 0≤ R2 ≤ 1 always.

• If R2 < 0.3 the fit of the model is poor.

• If 0.3 ≤ R2 < 0.7 , the fit of the model is fair

• If R2 ≥ 0.7 , the fit of the model can be very 
good.

• But we also have to examine the residual 
plot.



• A residual plot is a plot of the residuals 
versus the fitted values.

• If this plot shows a systematic pattern, it 
indicates that the error terms are not 
random, they are systematic. Then we 
might be able to find a better model.

• If you find a pattern, you can plot the 
residuals versus each of the predictor 
variables in the model, one predictor at the 
time.



• Minitab also calculates R2-adjusted.

• It is:

• R-square adjusted compares two estimates 

of Var(Y),       using the regression model, 

and      using the one sample model.
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• We can test if one or some predictor 

variables can be removed from the model. 

• Our aim is to simplify the model and still 

have a large R2.

• First we can test if at least one predictor 

variable is significant:

• H0: b1=b2=…=bk=0 against

• H1: at least one bi≠0, i=1,…k.



• Reject H0 at the level of significance a if 

the p-value in the analysis of variance 

table ≤ a.

• If H0 is rejected, we can go on testing one 

slope at the time.

• Start with the parameter with the highest 

p-value.

• In example 25, this is b1. Then we test   

H0: b1=0 against H1: b1≠0, assume b2, b3, 

b4 and b5 are not equal to 0. 



• If the p-value is ≤ a, all predictor variables 

are significant, and the residuals should be 

inspected.

• If the p-value is > a, H0 is retained. Remove 

the corresponding predictor variable from 

the model. Fit a model with the remaining 

predictor variables. Repeat the test-

procedure until all p-values in the 

suggested model are ≤ a.

• This method is called backward elimination.



• The level of significance should not be too 

small.

• Often a = 0.05 is O.K.

• Minitab lists the unusual observations.

• If you get a long list of unusual 

observations, something must be wrong, 

and you should try another model.



• When just one parameter is considered in 

the null hypothesis, a t-test with n-k-1 

degrees of freedom is performed. Here k= 

the number of parameters which are ≠0 in 

H1.

• If we find a good or fair model, it can be 

used for prediction of the response for a 

unit where the predictor variables have 

been observed.



• The model can also be used to assess the 

relationship between the response and a 

predictor variable.

• Interpretation of an estimated slope:

• If the corresponding predictor variable is 

increased by 1 unit, and the other 

predictor variables are kept constant, then 

the predicted response will increase by the 

value of the estimated slope.

• If the estimated slope is negative, we will 

say the predictor variable will decrease 

instead of increase.



• Interpretation of the estimated intercept:

• It is the predicted response when all the 

predictor variables in the model are 0. Often 

this interpretation does not give sense 

because there is no unit in the dataset with 

all predictor variables equal to 0.

• If we can control a predictor variable, we 

can arrange a situation in a most favorable 

way. 



Chapter 14. Analysis of variance.

Comparison of several treatments, the 

completely randomized design.

Independent random samples from two 

populations is a special case of this. We 

want to compare the mean of more than 

two populations. 



Example 26.

• We want to compare 4 varieties of grain (4 

populations) with respect to yield.

• We draw one sample from each 

population, the sample sizes could be: 

n1=5, n2=4, n3=4 and n4=5 respectively.

• Let Yij = the yield of grain, variety i, 

observation j. j=1, 2, 3, 4, j = 1,…ni.



• We assume: all observations are 

independent Yij ~ N(mi,s) i=1, 2,…4 =(k)

• Alternatively: Yij = m + ai + eij i=1,..k, j=1,..ni

• eij = the error term for observation ij.

• We assume: eij ~ N(0,s) and all error-terms 

are independent.

 m = The grand mean.

 ai = effect of treatment i and: 
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=
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• There are 5 unknown parameters here (k+1)

• They are: m1, m2, m3, m4, and s.

• They are estimated by:

• (the sample means).

 s can be estimated by the sample standard 

deviation of sample i:

= 11 ym̂ = 22 ym̂ = 33 ym̂ = 44 ym̂
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• Let N=the total number of observation =

• and k = the number of populations we 

compare, then the best unbiased estimator 

of s is:


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• SSE = sums of squares for errors.

• SST = sum of squares for treatment =

• It can be shown that SStotal = 

= SST + SSE
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• The effect we consider can be effect of 

something else than treatments. There 

could be effects of days, seasons, age 

groups, and so on.

• We can test the hypotheses: 

• H0: The treatments have equal means.

• That is: H0: m1=m2=…=mk

• The alternative hypothesis is:

• H1: At least two treatments have different 

means



• If H0 is true then SST/(k-1) will estimate s2.

• If H0 is not true, SST/(k-1) will estimate 

something greater than s2.

• will always estimate s2, no 

matter if H0 is true or false.
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• We reject H0 at the a level of significance if:

= the upper a-point of the F-distribution with 

degrees of freedom = df = (k-1, N-k).

If we reject H0, we will state that at least two 

population means are different.
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• To examine which population means are 

different, we construct confidence intervals 

for mi1-mi2. Often we will choose the level of 

significance smaller than a for these 

intervals.

• A 100(1-a)% confidence interval for m1 – m2 

is:
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• The interval can be used to test

• H0: m1 - m2 = 0 against H1: m1 - m2 ≠ 0 

• Retain H0 if 0 is inside the interval.

• Reject H0 if 0 is outside the interval.

• Minitab can calculate confidence intervals 

for the mean difference between two 

population means, e.g. Fisher intervals.



• Minitab calculates the simultaneous 

confidence level which often is much 

smaller than 1-a. It is the probability that all 

intervals cover the true population 

differences they are calculated for.

• An alternative hypothesis can be one-

sided:

• H0: m1 - m2 = 0 against H1: m1 - m2 < 0



• Reject H0 with significance level a if:

• or test: H0: m1-m2 = 0 against H1: m1 - m2 > 0

• Reject H0 with significance level a if:
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• To examine if the error terms are random 

and have a normal distribution, we consider 

fitted values and residuals: 

• A fitted value is:

• A residual is:

• The residuals can be plotted against the 

corresponding fitted values or the population 

number.

• The model can also be assessed by dot 

plots or box-plots.
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Two way analysis of variance.

Randomized block experiments for 

comparing treatments.

We want to compare k treatments. There 

are b blocks. Each block is split into k equal 

pieces.

One block:                                5 treatments



• We try all the treatments in one block, and 

decide at random which unit we shall give 

which treatment.

• If there are k treatments and b blocks, we 

get kb observations: Y11, Y12,…,Y1b, Y21, 

Y22,…Y2b, …, Yk1, Yk2, ….Ykb

• Assume: Yij = m + ai + bj + eij

i=1,..k, j=1,..b



• eij = the error term for observation ij.

• We assume: eij ~ N(0,s) and all error-terms 

are independent.

 m = The grand mean.

 ai = effect of treatment i       

 bj= effect of block j

• A block effect can be: One large field which 

is split into k small fields. We have b large 

fields.
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• A block effect can also be an effect of litter if 

there are b litters, and each litter have at least k 

pigs.

• The a-effects can be effects of something else 

than treatments. There could be effects of days, 

seasons, age groups, and so on.

• We can test the hypotheses: 

• H0: The treatment effects are equal

• H1: At least two treatment effects are different.



• As in the one way procedure, these sums of 
squares need to be calculated:

• SStotal = 

• SStreatment = SST = 

• In addition, sum of squares for blocks is:            
SSb =

• And sum of squares for errors =                       
SSE = SStotal – SST - SSb
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Source SS DF

Treatment SST k - 1

Block SSb b - 1

Error SSE (k – 1)(b – 1)

Total SStotal kb - 1



• We reject H0 if:

• The level of significance of the test is a.

• We can also test:

• H0: All block effects are equal

• H1: at least 2 block effects are different.
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• Reject H0 if:

• The level of significance of the test is a.

• Parameter estimates are:
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• A fitted value is:

• A residual is:

• The residuals can be plotted against the 

corresponding fitted values and against 

each effect.

• An estimator for s is:
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• We can construct a 100(1-a)% confidence 
interval for a1 – a2:

• The interval can be used to test

• H0: a1 - a2 = 0 against H1: a1 - a2 ≠ 0 

• Retain H0 if 0 is inside the interval.

• Reject H0 if 0 is outside the interval.
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• The test has significance level a.

• We can construct a 100(1-a)% confidence 

interval for b1 – b2:

• The interval can be used to test

• H0: b1 - b2 = 0 against H1: b1 - b2 ≠ 0
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An alternative hypothesis can be one-

sided:

H0: a1 - a2 = 0 against H1: a1 - a2 < 0

Reject H0 at the a level of significance if:



• Or test: H0: a1-a2 = 0 against H1: a1 - a2 > 0

• Reject H0 at the a level of significance if:
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Chapter 13. Analysis of 

Categorical Data.

Chi-square tests.

We have the events A1, A2,…,Ar. They are 
mutually exclusive and

SAAA r = ...21

We also have the events B1, B2,….,Bc. They 

are mutually exclusive and 

SBBB c = ...21



Example 27.

• A random sample of 219 alligators were 

captured in Florida. They were examined 

with respect to gender and primary food 

choice.

• Let B1=male, B2=female.

• Let A1=fish, A2=invertebrate, A3=reptile, 

A4=bird, A5=other.

• We want to test if gender and primary food 

choice are dependent.  



• In general: We must have a random sample. 

Each unit in the sample must have exactly 

one of the events A1, A2,…Ar and exactly 

one of the events B1, B2,…Bc.

• We observe Xij = the number of units having          

• i=1, 2,….r and j = 1, 2,….c.

• Let                

• pi.=P(Ai) and p.j=P(Bj)   
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X11 X12 X1c

X21 X22 X2c

Xr1 X2r Xrc

B1 B2 Bc total

A1

A2

Ar

X1.

X2.

Xr.

X.1 X.2 X.c n

Observations:



• A test of independence:

• H0:

• for every i and j.

• Against H1: At least one

)()()( jiji BPAPBAP =

)()()( jiji BPAPBAP 



• We reject H0 at the a level of significance 

if:

= the upper a-point of the chi-square 

distribution.
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Example 27 revisited.

• We test H0: gender and food choice are 

independent.

• H1: gender and food choice are 

dependent. 

• Minitab calculates the p-value = 0.719 and 

we retain H0 at a 5% level of significance 

because the p-value > 0.05.

• We can not state that gender and primary 

food choice are dependent.



A test of homogeneity.

• We still have a random sample of n units. 

On each unit we just observe if one of the 

events B1,…..Bc has occurred. 

• In advance we have decided the number 

of units we have in each of the categories 

A1,….Ar.

• Then x1. ,…., xr. will be fixed.



• Let p1j =P(Bj) in the first row.

• Let p2j =P(Bj) in the second row.

• Let prj =P(Bj) in the last row.

• We test: H0: p1j=p2j=…=prj against

• H1: at least 2 probabilities in the same 

column are different.



• The test statistic and the test criteria are 

the same for this test as for a test of 

independence, but the hypotheses are 

different.

• Here we can compare districts, diets and 

so on.

• The test statistic has approximately a chi-

square distribution with (r-1)(c-1) degrees 

of freedom if H0 is true and the expected 

counts are at least 5.



Example 28.

• Three sorts of seeds are compared with 

respect to germination. We sow 37 seeds of 

sort 1, 32 seeds of sort 2 and 30 seeds of 

sort 3.

• The results are:

Sort 1

Sort 2

germs     no germs   total

Total     79 20              99 

37

32

30 7

29 3

20 10Sort 3 30



• Let p11=P(germ) for sort 1,

• Let p21=P(germ) for sort 2 and

• Let p31=P(germ) for sort 3.

• We test H0: p11=p21=p31 against 

• H1: p11≠p21, or p11≠p31 or p21≠p31

• The p-value for the test of homogeneity is: 

0.062 > 0.05 and we retain H0 at a 5% 

level of significance. 



• If we want to compare the probability of 

germination for just 2 sorts of seed, we will 

perform a z-test for comparing 2 

proportions. 

• If a cell has an expected count less than 5, 

Minitab will give a warning.



Comparing 2 treatments, 

some examples.

Two samples or matched pairs?



Example1: comparing the mean content 

of vitamin C in orange and grapefruit juice.

• At a factory, orange juice and grapefruit 

juice are produced. It should be tested if 

the orange juice contains less vitamin C 

than the grapefruit juice. A random sample 

of 5 packages of each kind of juice are 

taken and the content of vitamin C in mg. 

per liter is observed. The results are:



• Package Orange grapefruit

• 1                   340 350

• 2 350 340

• 3 290 290

• 4 280 290

• 5 270 300

• What can be assumed about the 

observations? 

• Is this a 2 sample situation, or is it matched 

pairs?

• What hypotheses will we test?



Example2: comparing mean prices of fresh 

and frozen salmon sold on the export marked.

• In week 11 to 14 (2008), these 

registrations are taken on the price of 1 

kilo salmon (given in Norwegian kroner):

• Week fresh frozen

• 11 26,96 26,81

• 12 28,03 27,18

• 13 27,21 25,85

• 14 26,41 25,81



• We want to compare the mean price for 

fresh and frozen salmon sold on the export 

market. Are the mean prices different?

• What can be assumed about the 

observations? 

• Is this a 2 sample situation, or is it 

matched pairs?

• What hypotheses will we test?



Global warming.



• Summary 

• Autumn temperatures are at a record 5º C 
above normal, due to the major loss of sea 
ice in recent years which allows more 
solar heating of the ocean. Winter and 
springtime temperatures remain relatively 
warm over the entire Arctic, in contrast to 
the 20th century and consistent with an 
emerging global warming influence. 

• The year 2007 was the warmest on record 
for the Arctic, continuing a general, Arctic-
wide warming trend that began in the mid-
1960s (Fig. A1). 



Figure A1. Arctic-wide annual averaged surface air temperature anomalies 

(60°–90°N) based on land stations north of 60°N relative to the 1961–90 mean.



Yellow prices at Easter.

We saved 447 kroner by choosing 
the cheapest  supermarket.



• An inspection of the expenses when 

buying typical Easter groceries has been 

performed.

• Here you can see the results from 8 

supermarket chains and 1 Internet store.



The bar-chart shows the total price for selected items in a typical 

Easter-shopping basket. Coop Prix and Rema 1000 are 

cheapest, while Joker and Rett Hjem are most expensive.

http://www.dinside.no/php/art.php?id=514417


• If we ignore The Internet store Rett Hjem 
from the comparison, and concentrate on 
the supermarkets, Joker is the most 
expensive. Our shopping basket costed 
186 kroner more at Joker than at Coop 
Prix. Many items were most expensive  at 
Joker, and 130 kroner more expensive 
than the average. 

• Here are prices for selected items in the 
different supermarkets:



Rett hjem 20,22 32,48 19,90 

Ica Nær 15,90 16,90 10,14 

Meny 15,50 24,90 16,90 

Joker 17,90 26,90 20,50 

Coop Prix 14,50 24,00 14,50 

Rema 1000 15,00 23,90 13,00 

Rimi 13,50 23,50 15,00 

Bunnpris 15,90 19,90 7,90 

Kiwi 14,40 24,90 13,90 



• If we want to compare 2 stores with 

respect to mean prices, should we perform 

a 2 sample t-test or matched pairs?

• If we want to compare all stores with 

respect to mean prices, should we perform 

a one way or a two way Anova?



Polar bears are forced towards 

the north

The polar bears in the Artic Zone 
are not threatened by fast 

extinction. But they have become 
fewer, and increased melting of 
the ice forces them to the north 

and west. 





We want to estimate the size of a 

population

• First we take a random sample of m units 

(animals, could be polar bears). The units 

are marked and then released. We let them 

mix with the population, and then we take a 

new random sample of size n. The number 

of marked units in this sample is X. Then 

we have:                  and N is the population 

size.

• This gives:

n

X

N

m


X

mn
N 



• We take a random sample of size m=400, 

could be polar bears and mark them. Then 

the animals are released and they mix with 

the population. A new random sample of 

size 500 is taken, and X= 100 is observed.

• We estimate the population size:

2000
100

500400
=


N


