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Plant Factories
with Artificial
Lighting (PFALS)




LED and vertical farming

The development of high power Light
Emitting Diodes allowed for the growth of
plant factories, enclosed places where
plants are grown under non-natural light
and perfectly controlled climate and root-

zone conditions.




In greenhouse production, s |
even if high technologies are ~EEESSss===C s
used, seasonal differences are -

still found, and control of one

environmental parameter will
result in changes in another
parameter (e.g. when
greenhouse vents are open to
reduce heating, variations in
atmospheric CO, are also
experienced).
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Introduction



Growing systems and
environmental control

Open fields | Low tech Hydroponic

greenhouse | greenhouse

Control of aerial zone Very low Medium Medium Very high

Stability of rootzone High High Low Low

Controllability of rootzone Low Low High High

Variations in yield and High Medium Relatively Low

quality low

Initial investment per unit  Low Medium Relatively Extremely

land area high high

Yield Low Medium Relatively Extremely
high high

Classification of four types of plant production systems by their environmental control features (readapted from Kozai, 2015.

Plant Factory with Artificial Lighting, Springer).
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PFALs are plant

== production facilities

" with a thermally
insulated and nearly

Wil airtight warehouse
« &1 like structure, where

multiple culture

1500 layers with lamps on

" each shelf are
. vertically staked.
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v __ : - Constant and high yield are possible throughout
ey, 15 W the year;

- No pesticide use, elevate land, water and nutrient
use efficiency;

- Independent from solar radiation or soil fertility;

- Easier logistic chains;

- Wider choice of varieties and increased freshness:

- Lower food waste, more uniform quality, absence
of dirt, high harvest index and reduced
conservation.

Objectives of PFALs



When compared with field production, the list of
advantages are even higher (e.g. resilience to
adverse climate), but...

... comparison shall also consider that ...

24 - greenhouses are also adaptable to harsh
| climatic conditions;

- Investment costs for a plant factory are 4x to
10x higher than a high tech greenhouse;

- Artificial light requires electricity while a
greenhouse benefit (at least partially) from
solar radiation.

Objectives of PFALs



Unique selling points of PFALs

v Can be nearer to consumers
v’ Freshness

v’ Other (tastier) varieties

v’ Less need for crop protection
v’ Safer food

v’ Higher productivity
v On-demand delivery possible

v’ Less need for area

v’ Higher water use efficiency




Why only lettuce?

Small volume, short in height
(30 cm or less for easy vertical
cultivation)

Not requiring insect pollination
High harvest index

Growing well under relatively
low light intensity and easy
photoperiod management.




v’ Seedlings of
horticulture/floriculture
crops;

v Microgreens and sprouts;

v’ Medicinal plants with
improved metabolite
content;

v’ Cash crops with high values
(e.g. Cannabis) and legal
requirements for cultivation
indoor;

v’ Tropical/exotic crops (need
for accurate climate control);

MedMen cannabis production in Los Angeles, USA




Worldwide PFALs distribution

The application of indoor farming technologies takes place in several
regions of the world—mainly in Asian (42%), European (30%) and North
American (21%) countries.
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https://vertical-farming.net/info/#map

The market is expected to reach a global value of 5.80 billion USD by

2022 (MarketsAndMarkets, 2019).
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Resource use
efficiency in indoor
farming systems



Innovative
plant
production
systems

Limited fossil
fuels availability

Kozai et al. 2019. Towards sustainable plant factories with artificial lighting (PFALs): from greenhouses to

vertical farms. In Achieving sustainable greenhouse cultivation. Marcelis and Heuvelink. R VERSTA DI BOLOGNA



Plant production systems typologies

Plant Factories with Artificial Lighting (PFALS)
High value, fresh specialty food

Kozai et al. 2019. Towards sustainable plant factories with artificial lighting (PFALs): from greenhouses
to vertical farms. In Achieving sustainable greenhouse cultivation. Marcelis and Heuvelink.



INDOOR FARMS

w7

Stable food production

By controlling light, humidity and
temperatures, plant growth is
independent from external climate.

| Accessible Healthy
Food is produced close to consumption E The confined environment removes pests and
centers, so transport and storage are ﬁ pests, so no pesticides are needed.
’ reduced. “ 3
. . L
Accurate control of nutrients and light
!Droductsdls fresher and taste is B improves quality. E
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Re-elaborated from “Introducing Healthy Vertical Farming”, https://news.Samsung.com/
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, Phytochemicals
Minerals

Land Storage

Transport

Environmental impact?



Water use
efficiency



Water Use Efficiency
g FW L' H20

Field Greenhouse PFAL
Letuce P 320 5-60 4580

O

How much —

Basi M 211 2022 3344
fOOd per Rocket %;L 58 515 18-26
water use d ? Chicory ,ﬂ 2-22 24-26  20-26

Water use efficiency (WUE) of selected food w fg 0.98-1.60
products in response to the cropping system
(Source: Orsini et al., 2020, Sustainable use
of resources in indoor farms with artificial
lighting. European Journal of Horticultural
Sciences, in press).

0.31-0.50

Chicken meat * 0.23-0.27

Beef O 004-0.06




Water use efficient LED spectrum
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Pennisi, G., Blasioli, S., Cellini, A., Maia, L., Crepaldi, A., Braschi, I., Spinelli, F., Nicola, S., Ferndndez, J.A., ST
Stanghellini, C., Marcelis, L.F., Orsini, F., Gianquinto, G. 2019. Unravelling the role of red:blue LED lights on ; * -

resource use efficiency and nutritional properties of indoor grown sweet basil. Frontiers in Plant Science, doi: |
10.3389/fpls.2019.00305




Water use efficient LED spectrum
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Reports, 9, 14127 UNIVERSITA DI BOLOGNA




Water use efficient PPFD
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sustainable water and energy use in indoor cultivation
of lettuce and basil under red and blue LEDs. Scientia
Horticulturae, 272, 109508.




Transpiration water recovery

Experimental data on water use for 14 days in a Plant Factory with Artificial Lighting
(RH=80%, air temperature 30 °C).

Dehumidified ‘ - L Ventilated
(76%) ' < (7%)

Irrigated and
humidified
(100%)

Re-elaborated from Kozai, 2015, building on data from Ohyama et al.
(2000). .




Land surface use
efficiency



New ways for plant growing in PFALs

Horizontal Vertical

Lettuce: : 28.3 (2.5x

Kale: : 21.6 (3.0x 138 95

Spinach: : 12.6 (2.8x B EW plant-l
ant
Chrysanthemum: : 14.2 (2.7x g FW plant grwp

In greenhouses (from Liu et al. 2004) In PFALs (Touliatos et al. 2016)
Touliatos, Dodd and McAinsh, 2016. Vertical farming increases lettuce yield per unit area compared to

conventional horizontal hydroponics. Food and Energy Security, 5: 184-191. Liu, Chen, and Liu, 2005.
High efficiency column culture system in China. Acta Hortic. 691, 495-500




Surface needed to obtain 1 kg of fresh
lettuce per day

& ¢ TTe— B
EOVL DRSS 4t
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PFAL: 0.3 m?

Greenhouse: 9 m?

—

SUE (g FW m=2 d?)

Open field | Greenhouse 10 layers

PFAL

10 112 3110

—

Open field: 93 m?

Barbosa, G. et al. Comparison of land, water, and energy requirements of lettuce grown using hydroponic vs.
conventional agricultural methods. Int. J. Environ. Res. Public Health 12, 6879—-6891Pennisi et al., 2019.

Pennisi, G., et al. 2019. Resource use efficiency of indoor lettuce (Lactuca sativa L.) cultivation as affected by red:blue
ratio provided by LED lighting. NATURE Scientific Reports.




Adaptive plant spacing

Lettuce, optimal LAI=3 (ohyama etal., 2000).

Leaf area (m?) 0.01 0.02 0.05 0.08
Optimal plant density (plants m2)

0.09

oes | Hang et al. 2019

0.07

'E 0.06
go.os L
";‘o.oa L
':g 0.03 }
-

0.02

0.01
0

_ loslovich &
0 20 40 ¥ = Gutman. 2000

TEP(MI m~)

loslovich & Gutman. 2000. Optimal control of crop spacing in a plant factory. Automatica, 36(11), 1665-1668. Ohyama et
al. 2000. Energy and mass balance of a closed-type transplant production system. Water balance. J. SHITA 12(4), 217—-
224. Hang et al. 2019. Leaf area model based on thermal effectiveness and photosynthetically active radiation in lettuce
grown in mini-plant factories under different light cycles. Scientia Horticulturae, 252, 113-120.
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Movable LED lamps

0-12 _
12-24 ' Y I By adopting

movable LED lamps
it was possible to
halve the cost of
lamps per unit of

growing surface
based.

Li, K., Yang, Q. C., Tong, Y. X., & Cheng, R. (2014). Using movable light-emitting diodes for electricity

savings in a plant factory growing lettuce. Horttechnology, 24(5), 546-553.



Land Surface Use Efficiency
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Land Surface Use Efficiency (SUE) of selected 2.19

food products in response to the cropping =
system (Source: Orsini et al., 2020, s’ 1.05
Sustainable use of resources in indoor farms
with artificial lighting. European Journal of
Horticultural Sciences, in press). A
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Energy
use
efficiency



Energetic costs in plant factories

Production
costs

Fixed costs
(64%)

Variable
costs (36%)

Other costs
(9%)

Electricity
(91%)

J J

Yokoyama, R. Energy Consumption and Heat Sources in Plant Factories. In Yokoyama,
R. (2019). Energy Consumption and Heat Sources in Plant Factories. In Plant Factory
Using Artificial Light (pp. 177-184). Elsevier.



Electricity costs in plant factories

Electricity costs

Production facilities

Climate control
(30-35%) (10-15%)

Light
(50-55%)

J

Electricity requirements for climate control are also dependent on the lamps

efficiency (and their effect on the climate)

Yokoyama, R. Energy Consumption and Heat Sources in Plant Factories. In Yokoyama,
R. (2019). Energy Consumption and Heat Sources in Plant Factories. In Plant Factory
Using Artificial Light (pp. 177-184). Elsevier. ’



Energy consumption in a PFAL

Data from Experimental Plant Factory at Osaka Prefecture University.

Lettuce production of 5’000 plants per day.

Annual energy Relative Energy consumption
consumption consumption | per head of lettuce
(MWh year-1) (%) (kWh)

LED light 1’906 52.7% 1.044

Air Conditioning 1232 34.1% 0.675

by heat pumps

Production 478 13.2% 0.262

veclliies ~0.20 Euro kWh1(in Italy)

Total 3’616 ~ 0.40 Euro head! 1.981

T. Ogura, T. Wada, Elemental systems and consideration points for the design

of a plant factory, Air-Cond. Sanit. Eng. 89 (5) (2015) 35-41 (in Japanese).



Improving energy use
efficiency by means of
climate control
systems



Climate control systems

! Climate control systems

CO- TRI-

HEAT PUMP GENERATION GENERATION
SYSTEM SYSTEM
L|Heat [ Heat / IHeat -
Electricity Electricity
CO,

Yokoyama, R. Energy Consumption and Heat Sources in Plant Factories. In Yokoyama,
R. (2019). Energy Consumption and Heat Sources in Plant Factories. In Plant Factory
Using Artificial Light (pp. 177-184). Elsevier.



Climate control systems

Most common in plant factories, due to

warming associated with lighting

Heat with
low .
temperature - Insulation;

A
Q
&2‘/-

- Inside and outside temperature;

&

Heat with

high HEAT PUMPS

temperature

Yokoyama, R. Energy Consumption and Heat Sources in Plant Factories. In Yokoyama,
R. (2019). Energy Consumption and Heat Sources in Plant Factories. In Plant Factory ey
Using Artificial Light (pp. 177-184). Elsevier. ”



Climate control systems

TRI-GENERATION

CO, produced by combustion may be
used to promote crop photosynthesis

CO-GENERATION

Waste energy from the system is

'i\

converted into electricity

Yokoyama, R. Energy Consumption and Heat Sources in Plant Factories. In Yokoyama,
R. (2019). Energy Consumption and Heat Sources in Plant Factories. In Plant Factory
Using Artificial Light (pp. 177-184). Elsevier. *



Heat pump or Co-generation?

Model data from Experimental Plant Factory at Osaka Prefecture
University. Lettuce production of 5’000 plants per day.

8.58 5.97
kWh h't kWh ht co- Power

generation generation generation

Power

LED Heat J Production Production | Absorption
light §| pump facilities facilities refrigerator

Lettuce CO-GENERATION
HEAT-PUMP SYSTEM

Yokoyama, R. Energy Consumption and Heat Sources in Plant Factories. In
Yokoyama, R. (2019). Energy Consumption and Heat Sources in Plant Factories. In .
Plant Factory Using Artificial Light (pp. 177-184). Elsevier.




Improving energy use
efficiency by means of
light management



Efficacy of the diodes to convert

electricity into photons
| peE(mouy N More

RED diode “ SIEAEETE
BLUE diode o et
LEDs emitting
- Park and Runkle, 2018 Blanken et al., 2013
at longer

l ight Output Characteristics WaVEIengthS

In response to increasing
junction temperature,
BLUE diodes may increase
their efficacy while RED
diodes decrease it (Wang
o et al., 2007; Pennisi et al.,
O 2019)

Figure 2. Typical normalized light output vs. junction temperature for LUXEON 35351 Color Line at 100mA.

Mormalized Light Qutput [-]
o

Pennisi et al., 2019 Unravelling the role of red:blue LED lights on resource use efficiency and nutritional properties of indoor grown sweet
basil. Frontiers in Plant Science. Wang et al., 2007. Effects of using light-emitting diodes on the cultivation of Spirulina platensis. Biochem.

Eng. J. 37, 21-25. Park and Runkle 2018. Spectral effects of light-emitting diodes on plant growth, visual color quality, and photosynthetic
photon efficacy: white versus blue plus red radiation. PLoS One 13:e0202386. Blanken et al., 2013. Cultivation of microalgae on artificial
light comes at a cost. Algal Res. 2, 333-340. DIV ERe TR DI BOtoChA




Efficacy of lamps to convert
electricity into light photons

RB
Flygrow FL216 3 Pennisi et al., 2019a
Flygrow FL384 3 Pennisi et al., 2019b
Valoya AP-673 5
Najera et al., 2018
Valoya AP-67 3
Valoya R150 NS1 3 Sarkka etal., 2017
Orbitec LED tower 3
Valoya R150 NS1 | 2 Wallace and
Both, 2016
Cree 18W 1.3
0 0.2 0.4 0.6 0.8 1 1.2 1.4 16 1.8

Photosynthethic Photon Efficacy (umol J)

Pennisi et al., 2019a. Unravelling the role of red:blue LED lights on resource use efficiency and nutritional properties of indoor grown sweet basil.

Frontiers in Plant Science, in press. doi: 10.3389/fpls.2019.00305 Pennisi et al., 2019b. Modelling environmental burdens of indoor-grown vegetables
and herbs as affected by red and blue LED lighting. Sustainability, 11(15), 4063. Najera et al., 2018. LED-enhanced dietary and organoleptic qualities
in postharvest tomato fruit. Postharv. Biol. Technol. 145, 151-156. Sarkka et al., 2017. Effects of HPS and LED lighting on cucumber leaf
photosynthesis, light quality penetration and temperature in the canopy, plant morphology and yield. Agric. Food Sci. 26, 102-110. Wallace and Both
2016. Evaluating operating characteristics of light sources for horticultural applications. Acta Hortic. 1134, 435-444.




Energy use efficient LED spectrum
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Pennisi, G., Blasioli, S., Cellini, A., Maia, L., Crepaldi, A., Braschi, I., Spinelli, F., Nicola, S., Ferndndez, J.A., ST
Stanghellini, C., Marcelis, L.F., Orsini, F., Gianquinto, G. 2019. Unravelling the role of red:blue LED lights on ; * -

resource use efficiency and nutritional properties of indoor grown sweet basil. Frontiers in Plant Science, doi: |
10.3389/fpls.2019.00305




Energy use efficient LED spectrum
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Reports, 9, 14127 UNIVERSITA DI BOLOGNA




EUE

Relative spectral response (%)

140

Energy use efficient PPFD
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Pennisi et al., 2020. Optimal light intensity for
sustainable water and energy use in indoor cultivation
of lettuce and basil under red and blue LEDs. Scientia
Horticulturae, 272, 109508.
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Energy use efficient photoperiod
management
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Photoperiod (day/night hour)

In lettuce, basil and chicory maximum EUE at 16/8 hours
of photoperiod. In rocket EUE is not affected by

photoperiod.

Pennisi et al., 2020. Optimal photoperiod for indoor cultivation of leafy
vegetables and herbs. European Journal of Horticultural Sciences, in press.




Energy Use Efficiency

@ g FW kWh''
Field Greenhouse PFAL

How much .- 13%%%‘ 30-190 | 1-50
food per

energy
esze”  260-280
u S e d ? Chicken meat \\ . 220-300

& =
&7yl 5802400

Beef

Energy Use Efficiency (EUE) of selected food products in response to the cropping
system (Source: Orsini et al., 2020, Sustainable use of resources in indoor farms with ..
artificial lighting. European Journal of Horticultural Sciences, in press). Ghrile




Light use efficiency



Light use efficient PPFD
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Photoperiod (day/night hour)

In chicory maximum LUE at 16/8 hours of photoperiod.
In lettuce, basil and rocket EUE is not affected by

photoperiod.

Pennisi et al., 2020. Optimal photoperiod for indoor cultivation of leafy
vegetables and herbs. European Journal of Horticultural Sciences, in press.




Environmental
assessment
of indoor farms



Plant factory typologies
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LCA studies based on plant factory
typology (from SCOPUS database)
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10 entries (keywords: LCA;

_ greenhouse cultivation)
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Artificial Light
Based (PFALs)

4 entries (keywords:

LCA; indoor farming;
vertical farming; plant

factories)



Sunlight based
plant factories
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Environmental assessment studies of

greenhouse crop production
=% = ALCA-study on greenhouse technologies:

t Greenhouse with zinc-coated steel structure and glass covering
% (Greenhouse “A”).

Tunnel shaped zinc-coated steel structure covered with an LDPE-
& based plastic film (Greenhouse “B”).

Greenhouse with Oakwood structure covered with an LDPE-based
plastic film (Greenhouse “C”).

Russo, G. and Scarascia Mugnozza, G. (2005). LCA METHODOLOGY APPLIED TO VARIOUS TYPOLOGY OF GREENHOUSES. Acta Hortic. 691,

837-844 DOI: 10.17660/ActaHortic.2005.691.103
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stud

ironmental assessment
of greenhouse crop product
Environmental impact is reduced using hydroponics
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Environmental impact of
greenhouse crops in Italy

0.0 III.I

M Zucchini ™ Tomato M Cherry tomato

N
o

(B
o1

GWP
(kg CO, eq

[N

o

kg! packaged product)

)
U

B Melon MW Pepper

Cellura, M., Longo, S., & Mistretta, M. (2012). Life Cycle Assessment (LCA) of protected
crops: an Italian case study. Journal of cleaner production, 28, 56-62.




Plant Factories
with artificial
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Environmental assessment of plant

factories?

Environmental and resource use analysis of plant
factories with energy technology optlons A case
Study N Japan Sunlight-based :

- § Artificial- Ilght-based

JB 1¢?’ i T

,,,

Kikuchi et al., 2018. Environmental and resource use analysis of plant factories with energy

technology options: A case study in Japan. Journal of Cleaner Production, 186: 703-717



Boundaries of the LCA analysis
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Kikuchi et al., 2018. Environmental and resource use analysis of plant

factories with energy technology options: A case study in Japan. Journal of
Cleaner Production, 186: 703-717




Results of the LCA analysis

Kg CO, eq kg FW

0
Conventional h
PFAL
PFAL with co-generation

PFAL with absorption chiller

PFAL with improved heat pumps

|
- |
P

PFAL with PV power |
-/

PFAL with all technologies above —

Kikuchi et al., 2018. Environmental and resource use analysis of plant factories with

energy technology options: A case study in Japan. Journal of Cleaner Production, 186: b
703'7 17 ! ' -?'::; I % : NA




Are Plant Factories sustainable?

» Current plant factories reduce phosphorus, water,
and land requirements for food production.

» Current plant factories cause higher greenhouse
gas emissions than conventional systems.

— Energy for plant factories can be saved by
emerging enerqgy technology options.

— Solar-light plant factories are more efficient, but
less widely applicable.

— Artificial-light plant factories are comparatively less
efficient, but widely applicable.

Kikuchi et al., 2018. Environmental and resource use analysis of plant factories with

energy technology options: A case study in Japan. Journal of Cleaner Production, 186:
703-717




Plant factories vs Greenhouses
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Graamans, L., Baeza, E., Van Den Contents Fists avilable ot ScicoceDirec
Dobbelsteen, A., Tsafaras, I., &
Stanghellini, C. (2018). Plant factories
versus greenhouses: Comparison of

resource use efficiency. Ag ricultural Plant factories versus greenhouses: Comparison of resource use efficiency

Luuk Graamans™', Esteban Baeza", Andy van den Dobbelsteen”, Ilias Tsafaras”,
SyStemS, 1 60, 3 1'43 . Cecilia Stanghellini”

Agricultural Systems

jfournal homepage: www clsuviar com/locato/agsy
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Resource requirement in plant factories

* To quantify resource requirement for lettuce
production in greenhouses and plant factories

* To analyse how this is affected by external
climate.

b O NN M g
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The models

* Greenhouses: dynamic model KASPRO (De WAGENINGEN
ZWart, 1996 and SeVeraI additiOnS) UNIVERSITY & RESEARCH

* Plant Factory: P, Desi . (&
esignBuilder
EnergyPlus + DesignBuilder il ’

EnerayPlus

¢ Lettuce grOWth mOdeI : " Agricultural Systems ——
(Va n H e nte n’ 1994) = ": ‘- Volume 45, issue 1, 1994, Pages 55-72 m

Validation of a dynamic lettuce growth model for greenhouse
climate control

E.J. Van Henten

3 Show more

https://doi.org/10.1016/S0308-521 X{94 90280-1 Get rights and content
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Heating, energy screen and
fogglng [300 g m=2 h1]

CO, setpoint 800 vpm,
capaC|ty [180 kg Hal h-1]




To match light available in NLD:

lamps 100 umol m2 s1 PAR
In total 300 MJ m~2 year-!
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5 layers: 500 pmol m2s1, 16 h/24
#8 LED efficiency 2.3 pmol/J = 8.3mol/kWh
| Sufficient cooling capacity
CO, 1200 vpm, sufficient dosing capacity
Well insulated outer shell, 0.05 W m=2 K1




Average dry matter production (g m-2 d-1)
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Production per unit cultivation area
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Annual dry weight production (kg m-2 y-1)

about 30 kg fresh
weight & 100
lettuce heads
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Average annual water use per fresh weight (kg kg™?)

20

18

16

14

12
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Water use per kg fresh weight

Fogging
% Transpiration
M Biomass

35%

Sweden,
without light

Sweden,
with light

Netherlands

Abu Dhabi

Plant factory
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Energy use per kg dry weight

MJ kg,

3500
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Energy use per kg dry weight

mHeating = Electric (lighting) Electric (other)
B Dehumidification Sensible cooling LED cooling
Solar - PAR 2 Solar - NIR “'Solar - non-transmitted

PF

GH

1500 2000 2500 3000 3500
MJ kg, !

0 500 1000
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Energy use per kg dry weight

W Purchased =
A

2000 2500 3000 3500
78

0 500 1000 1500
MJ kgdw-1



Final remarks on
plant factories

= Plant factories are more
efficient than greenhouses
with respect to all resources
(land, water, energy)

® However, in all cases the
need for purchased energy is
higher in plant factories than LRy St _
in greenhouses RSN AR 7

...........

Lo .
" The viability of plant factories depends on the st S

value of product and of other resources (such
as land) relative to purchased energy



Scenarios for improving environmental

performances of PFALs
S

Environmental Assessment of an Urban Vertical
Hydroponic Farming System in Sweden.

Martin, M., & Molin, E. (2019). Environmental Assessment of an Urban Vertical Hydroponic
Farming System in Sweden. Sustainability, 11(15), 4124.



Gronska Vertical Farm
(Stockolm, Sweden)

Dashed line represents the system boundaries.
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Martin, M., & Molin, E. (2019). Environmental Assessment of an Urban Vertical

Hydroponic Farming System in Sweden. Sustainability, 11(15), 4124.
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Garden
soil

Gronska Vertical Farm S
(Stockolm, Sweden)

Wrapped
in waxed

paper

‘ \“4(
Martin, M., & Molin, E. (2019). Environmental Assessment of an Urban Vertical
Hydroponic Farming System in Sweden. Sustainability, 11(15), 4124.



Gronska Vertical Farm
(Stockolm, Sweden)

MENe
or

paper
pot?

Martin, M., & Molin, E. (2019). Environmental Assessment of an Urban Vertical Hydroponic
Farming System in Sweden. Sustainability, 11(15), 4124.

soil or

coir?



Gronska Vertical Farm
(Stockolm, Sweden)

High impact is associated with peat contained in the gardening
0,
120% - [~ soil, and since plants are sold with the substrate, it is not reused.
100%
° mBaseline
. (Plastic Pot-
80% - Soil)

m Paper Pot-Soll
60%

40% / m Plastic Pot-Coir

0, -
20% m Paper Pot-Coir
0% -
GHG Acid. Eutrop. Human Tox. ABD
Greenhouse
gas impact

Martin, M., & Molin, E. (2019). Environmental Assessment of an Urban Vertical Hydroponic
Farming System in Sweden. Sustainability, 11(15), 4124.

ALMA MATER STUDIORUM
UNIVERSITA DI BOLOGNA



Gronska Vertical Farm
(Stockolm, Sweden)

Pa per Plastic is associated with potential acidification and
120% _ abiotic resource depletion.
pot
100% :
m Baseline
(Plastic Pot-
80% Soil)

m Paper Pot-Soll
60%

40% m Plastic Pot-Coir

0,
20% m Paper Pot-Coir

0%
GHG Acid. Eutrop. Human Tox. ABD

Abiotic Resource Depletion

Martin, M., & Molin, E. (2019). Environmental Assessment of an Urban Vertical Hydroponic
Farming System in Sweden. Sustainability, 11(15), 4124.

ALMA MATER STUDIORUM
UNIVERSITA DI BOLOGNA



Gronska Vertical Farm
(Stockolm, Sweden)
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Nordic mix

Electricity by Swedish mix or ﬁ
Nordic mix?

Larger fossil
share

Martin, M., & Molin, E. (2019). Environmental Assessment of an Urban Vertical Hydroponic
Farming System in Sweden. Sustainability, 11(15), 4124.



Gronska Vertical Farm
(Stockolm, Sweden)
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=
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Martin, M., & Molin, E. (2019). Environmental Assessment of an Urban Vertical Hydroponic
Farming System in Sweden. Sustainability, 11(15), 4124.

Larger fossil
share
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How can light
management improve
sustainability of indoor
farming systems?

Pennisi, G., Sanyé-Mengual, E., Orsini, F., Crepaldi, A., Nicola, S., Ochoa, J., Fernandez, J.A.,

Gianquinto, G. 2019. Modelling environmental burdens of indoor-grown vegetables and herbs as
affected by red and blue LED lighting. Sustainability, 11(15), 4063. doi: 10.3390/sul11154063.




Growing systems used for the
experlmentatlon

Plants (a) grown on individual
deep water culture hydroponic
. systems where the root system
(b) floats into the nutrient
solution (c), contained in a plastic
jar and screened from light by a
black cloth (d). Constant aeration
of the nutrient solution s
provided by air pumps and
distributed to individual growing
systems through pipes (e). Each
light treatment is allocated to a
light insulated compartment (f) of
a climate controlled chamber,
with white-painted walls and fans
b allowing for air recirculation.

Pennisi, G., Sanyé-Mengual, E., Orsini, F., Crepaldi, A., Nicola, S., Ochoa, J., Fernandez, J.A.,

Gianquinto, G. 2019. Modelling environmental burdens of indoor-grown vegetables and herbs as
affected by red and blue LED lighting. Sustainability, 11(15), 4063. doi: 10.3390/sul11154063.




Lettuce environmental assessment

100% B Seedlings |
%0% Electricity accounts
80% ¥ Nutrient solution for 77-93% of
70% :
60°% environmental
° B Electricity .
50% impact and 64% of
) RNl cconomic costs of
0% production
10% B Aux - Cultivation
0% - - P
C/ o % Q 0 & 0 0 (‘/ # Aux - Chamber ~1
C O & QV“ § QO & ‘{ wﬁ(’ ARV $ & 4

Contribution of the different elements of the life cycle inventory to the impact for lettuce production
in RBO.5 treatment. Midpoint categories are climate change (CC), ozone depletion (OD), human
toxicity, cancer effects (HTc), human toxicity, non-cancer effects (HTnc), particulate matter (PM),
ionising radiation (IR), photochemical ozone formation (POF), acidification (AC), terrestrial
eutrophication (TEU), freshwater eutrophication (FEU), marine eutrophication (MEU), ecotoxicity (ET),
land use (LU), water use (WU), resources use (RU).

Pennisi, G., Sanyé-Mengual, E., Orsini, F., Crepaldi, A., Nicola, S., Ochoa, J., Fernandez, J.A.,

Gianquinto, G. 2019. Modelling environmental burdens of indoor-grown vegetables and herbs as
affected by red and blue LED lighting. Sustainability, 11(15), 4063. doi: 10.3390/sul11154063.




Crop environmental assessment

" Normalized and weighted environmental

B2 0 %ﬁ ﬂi\ impacts of the different crops and LED
e : treatments. For each crop, least
| environmental impacting (green) and most

environmental impacting (red) LED
treatments are indicated.
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Pennisi, G., Sanyé-Mengual, E., Orsini, F., Crepaldi, A., Nicola, S., Ochoa, J., Fernandez, J.A.,

Gianquinto, G. 2019. Modelling environmental burdens of indoor-grown vegetables and herbs as
affected by red and blue LED lighting. Sustainability, 11(15), 4063. doi: 10.3390/sul11154063.




Carbon Footprint
>, kg COz2kg” FW
@ Field Greenhouse PFAL

How much

COZ 1S 001- 021- e

Lettuce ©

0.38 3.15 25

v M

released
per kg of
food
produced?

Environmental assessment of selected food products in response to the cropping
system (Source: Orsini et al., 2020, Sustainable use of resources in indoor farms with ..
artificial lighting. European Journal of Horticultural Sciences, in press). 2




Conclusive
remarks



Where to go for sustainable indoor
farming?

Improving water use efficiency through appropriate light management and
condensation of air humidity;

Reducing land use, through adequate growing systems, dynamic plant

spacing and crop layering;
Reducing energy needs, by adoption of tri-generation systems and

improved light use efficiency by appropriate light management (spectrum,

photoperiod and intensity);

| * Improving PFAL environmental
performances by coupling co-generation,
o absorption chiller and PV electricity.

e i t l I 'r * Adequately choose energy sources, least
! | | |
WI WI [ |

impacting crops, improved spectral
BRIGHT FUTURE

composition and adequate crop input.
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